Numerical analysis of Poisson-Nernst Planck system of equations to study the propagation of a transient signal in neurons - Thèses et HDR CNRS en sciences cognitives
Thèse Année : 2024

Numerical analysis of Poisson-Nernst Planck system of equations to study the propagation of a transient signal in neurons

Analyse numérique du système d'équations Poisson-Nernst Planck pour étudier la propagation d'un signal transitoire dans les neurones

Paul Paragot
  • Fonction : Auteur
  • PersonId : 1418184
  • IdRef : 280457227

Résumé

Neuroscientific questions about dendrites include understanding their structural plasticityin response to learning and how they integrate signals. Researchers aim to unravel these aspects to enhance our understanding of neural function and its complexities. This thesis aims at offering numerical insights concerning voltage and ionic dynamics in dendrites. Our primary focus is on modeling neuronal excitation, particularly in dendritic small compartments. We address ionic dynamics following the influx of nerve signals from synapses, including dendritic spines. To accurately represent their small scale, we solve the well-known Poisson-Nernst-Planck (PNP) system of equations, within this real application. The PNP system is widely recognized as the standard model for characterizing the electrodiffusion phenomenon of ions in electrolytes, including dendritic structures. This non-linear system presents challenges in both modeling and computation due to the presence of stiff boundary layers (BL). We begin by proposing numerical schemes based on the Discrete Duality Finite Volumes method (DDFV) to solve the PNP system. This method enables local mesh refinement at the BL, using general meshes. This approach facilitates solving the system on a 2D domain that represents the geometry of dendritic arborization. Additionally, we employ numerical schemes that preserve the positivity of ionic concentrations. Chapters 1 and 2 present the PNP system and the DDFV method along with its discrete operators. Chapter 2 presents a "linear" coupling of equations and investigate its associated numerical scheme. This coupling poses convergence challenges, where we demonstrate its limitations through numerical results. Chapter 3 introduces a "nonlinear" coupling, which enables accurate numerical resolution of the PNP system. Both of couplings are performed using DDFV method. However, in Chapter 3, we demonstrate the accuracy of the DDFV scheme, achieving second-order accuracy in space. Furthermore, we simulate a test case involving the BL. Finally, we apply the DDFV scheme to the geometry of dendritic spines and discuss our numerical simulations by comparing them with 1D existing simulations in the literature. Our approach considers the complexities of 2D dendritic structures. We also introduce two original configurations of dendrites, providing insights into how dendritic spines influence each other, revealing the extent of their mutual influence. Our simulations show the propagation distance of ionic influx during synaptic connections. In Chapter 4, we solve the PNP system over a 2D multi-domain consisting of a membrane, an internal and external medium. This approach allows the modeling of voltage dynamics in a more realistic way, and further helps checking consistency of the results in Chapter 3. To achieve this, we employ the FreeFem++ software to solve the PNP system within this 2D context. We present simulations that correspond to the results obtained in Chapter 3, demonstrating linear summation in a dendrite bifurcation. Furthermore, we investigate signal summation by adding inputs to the membrane of a dendritic branch. We identify an excitability threshold where the voltage dynamics are significantly influenced by the number of inputs. Finally, we also offer numerical illustrations of the BL within the intracellular medium, observing small fluctuations. These results are preliminary, aiming to provide insights into understanding dendritic dynamics. Chapter 5 presents collaborative work conducted during the Cemracs 2022. We focus on a composite finite volume scheme where we aim to derive the Euler equations with source terms on unstructured meshes.
Les questions neuroscientifiques concernant les dendrites incluent la compréhension de leur plasticité structurale en réponse à l'apprentissage et la manière dont elles intègrent les signaux. Les chercheurs visent à élucider ces aspects pour améliorer notre compréhension de la fonction neuronale et de ses complexités. Cette thèse vise à offrir des perspectives numériques concernant la dynamique du voltage et des ions dans les dendrites. Notre objectif est de modéliser l'excitation neuronale dans les dendrites. Nous abordons la dynamique ionique suite à l'afflux de signaux nerveux. Pour les simuler précisément, nous résolvons le système d'équations Poisson-Nernst-Planck (PNP). Le système PNP est reconnu comme le modèle standard pour caractériser le phénomène d'électrodiffusion des ions dans les électrolytes, y compris les structures dendritiques. Ce système non linéaire présente des défis en modélisation et en calcul en raison de la présence de couches limites rigides (BL). Nous proposons des schémas numériques basés sur la méthode des volumes finis Discrete Duality Finite Volumes (DDFV) pour résoudre le système PNP. Elle permet un raffinement local du maillage au niveau de la BL, en utilisant des maillages généraux. Cette approche facilite la résolution du système sur un domaine 2D représentant la géométrie des dendrites. Nous utilisons des schémas numériques préservant la positivité des concentrations ioniques. Chapitres 1 et 2 présentent le système PNP et la méthode DDFV ainsi que ses opérateurs discrets. Le chapitre 2 présente un couplage "linéaire" des équations et explore son schéma numérique associé. Ce couplage a des problèmes de convergence, où nous illustrons ses limites à travers des résultats numériques. Le chapitre 3 introduit un couplage "non linéaire", permettant une résolution numérique précise du système PNP. Les deux couplages sont effectués avec la méthode DDFV. Dans le chapitre 3, nous illustrons la convergence d'ordre 2 en espace. Nous simulons un cas test impliquant la BL. Nous appliquons le schéma DDFV à la géométrie des épines dendritiques en 2D et discutons nos simulations en les comparant avec des simulations en 1D de la littérature. Nous introduisons également deux configurations originales de dendrites, fournissant des informations sur la manière dont les épines dendritiques s'influencent mutuellement, révélant l'étendue de leur influence mutuelle. Nos simulations montrent la distance de propagation de l'influx ionique lors des connexions synaptiques. Dans le chapitre 4, nous résolvons le système PNP sur un système multi-domaines 2D composé d'une membrane, d'un milieu interne et d'un milieu externe. Cette approche permet la modélisation de la dynamique du voltage de manière plus réaliste, et aide également à vérifier la cohérence des résultats du chapitre 3. Nous utilisons le logiciel FreeFem++ pour résoudre le système PNP dans ce contexte. Nous présentons des simulations correspondant aux résultats du chapitre 3, démontrant la sommation linéaire dans une bifurcation dendritique. Nous étudions la sommation des signaux en ajoutant des entrées à la membrane d'une branche dendritique. Nous identifions un seuil d'excitabilité où la dynamique du voltage est significativement influencée par le nombre d'entrées. Nous offrons également des illustrations numériques de la BL à l'intérieur du milieu intracellulaire, observant de petites fluctuations. Ces résultats sont préliminaires, visant à fournir des informations pour comprendre la dynamique dendritique. Le chapitre 5 présente un travail collaboratif mené lors du Cemracs 2022. Nous nous concentrons sur un schéma de volumes finis composite où nous visons à dériver les équations d'Euler avec des termes sources sur des maillages non structurés.
Fichier principal
Vignette du fichier
2024COAZ5020.pdf (10.27 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04707173 , version 1 (24-09-2024)

Identifiants

  • HAL Id : tel-04707173 , version 1

Citer

Paul Paragot. Numerical analysis of Poisson-Nernst Planck system of equations to study the propagation of a transient signal in neurons. Numerical Analysis [math.NA]. Université Côte d'Azur, 2024. English. ⟨NNT : 2024COAZ5020⟩. ⟨tel-04707173⟩
0 Consultations
0 Téléchargements

Partager

More